断面観察による FRP防水材の劣化状況考察(その3)

			止会員	梶野止彦*	止会員	林 将尊*
防水材料	強度保持率	経年劣化	正会員	梅田佳裕*	正会員	落合 圭*
促進曝露	FRP 防水材	断面観察	正会員	長谷川清勝*	正会員	辻 修也*
			正会昌	小杉雅隆*		

1.はじめに

前報では、防水運営委員会・耐久性評価委員会の耐候 性促進試験の試験体であるキセノン、サンシャイン、耐 熱(80、112日)、屋外暴露(3年)の断面観察を実施 した。その結果キセノンでは表面から 40μmでガラスの 析出が確認されたが、強度物性低下はなかった。

今回、実際の現場の改修物件でサンプリングしたFR P防水材を前報と同様にFE-SEM(電界放射型走査 電子顕微鏡)を用いて断面観察を行った。

2.試験

2.1.評価試験体

試験体				
採取地域	鹿児島	鹿児島	鹿児島	鹿児島
施工年数	11 年	同左	13 年	同左
トップコート有無	有(灰)	無し	有(灰)	有(灰)
部位	排水溝	排水溝	屋上 平面	屋上 立面
状態	正常	浮き	正常	正常
下地	RC	RC	RC	RC

) 内はトップコートの色を表す

試験体				
採取地域	静岡	静岡	東京	静岡
施工年数	22 年	同左	10 年	23 年
トップコート有無	有(黄緑)	有(黄緑)	有(灰)	有(緑)
部位	屋上	屋上	ベランダ	折板
마까	平場	平場	1 777	屋根
状態	正常	浮き	浮き	正常
下地	RC	RC	木質	鉄部

2.2 試験体形状

各サンプリング品を JIS K7113 の 1 号試験片に切削加 工し、引張試験を終了した後、試験片をさらに 10mm× 20mm に切削加工したものを観察試験片とした。

2.3 評価方法

評価方法を表1に示す。

表 1 評価方法

	項目	試験方法		
# from July	引張強さ	JIS K7113 引張速度 5mm/min		
物性	伸び	1 号試験片 n=5		
断面観察	2 次電子画像	FE-SEM による画像処理		

FE-SEM:日立ハイテクノロジ-ズ社製 S-4800

で断面観察を実施した。(加速電圧20kV)

3.評価結果

3.1 各試験体の機械物性を表 2 に,保持率を図 1 に示す。 表 2 機械物性

試験体	引張強さ	伸び	厚み
市 以间央 14	(MPa)	(%)	(mm)
11 年(正常)	40	1.4	1.84
11 年(浮き)	32	0.8	1.36
13 年(平面)	67	2.2	1.92
13 年(立面)	33	2.0	1.34
22 年(正常)	76	1.3	1.37
22 年(浮き)	72	1.7	2.12
	54	1.52	0.90
(トタン)	80	1.2	1.52
ブランク*	80	2.2	2.22

*促進試験耐久性評価のブランクの値を採用

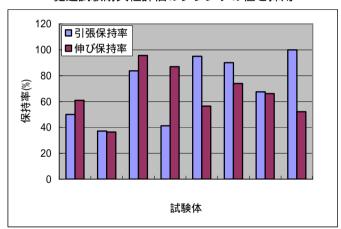
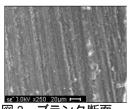
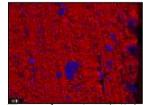
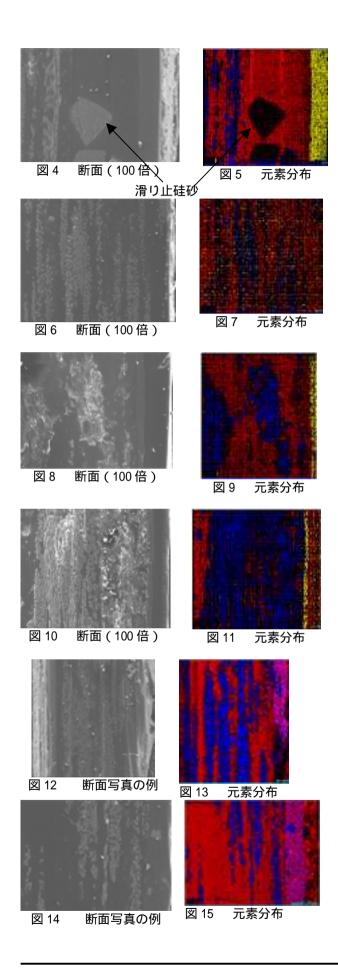




図1 各試験体の引張強度、伸び保持率



ブランク断面

図3 ブランク元素分布

3.2 各試験体の断面写真及び元素分布を図 1~16 に示す。



図 13 断面写真の例

図 14 元素分布

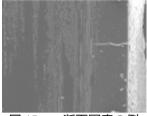


図 15 断面写真の例

図 16 元素分布

元素分布の各色の元素は以下のとおり

赤:炭素(樹脂層を示す)

青:珪素(ガラス繊維を示す)

黄:チタン(灰色トップコートを示す) 桃:クロム(緑の顔料成分を示す)

4.考察

機械物性

排水溝付近から採取した防水材(、)は強度、伸び共に保持率が低く、13 年経過した立面部(図)は強度保持率が低い。

一方、22 年経過した平面部の防水材でも保持率が高い。

• 断面観察

排水溝付近(図 4~7)の断面及び元素分布にバラツキや配向等見られない。

13 年経過した立面部(図 10、11)、 木質下地(図 13,14)で断面に白い部分(ガラス繊維)、元素分布でも青い部分(珪素)の比率が高く、先の機械物性低下と相関性がありそう。

5.まとめ

- (1) FRP防水材の経年による強度・伸び保持率は環境 に影響することが分かった。水の滞留しやすい箇所で は、物性低下は大きいが、元素の消失、配向はない。
- (2) FRP防水材の立面への施工は樹脂量が少なくなり、 その分、強度低下が見られる。
- (3) FE-SEMによる断面観察及び元素分布だけで 劣化状況を予測することは困難である。

参考文献

1)村尾正義他「断面観察によるFRP防水材の劣化 状況考察」その1、2

日本建築学会大会学術講演梗概集 2009 年 9 月